
hr. J. Heor Mu, Trun.\/er. Vol. 35, No. Il. pp. 3141-3151, 1992 OOl7-9310/92 %5.00+0.00 
Printed m Great Britam IN: 1992 Pergamon Pres Ltd 

Direct numerical solution of diffusion problems 
with intrinsic randomness 
XIAOWEI S. HE and JOHN G. GEORGIADIS 

Department of Mechanical Engineering and Materials Science, Duke University, 
Durham, NC 27706, U.S.A. 

(Received 30 November 1990 and in,final,form 8 Augusi 1991) 

Abstract-A hybrid numerical-symbolic manipulation scheme is developed for the analysis of diffusion 
problems with intrinsic randomness. The scheme is applied in the study of one-dimensional heat conduction 
in fully-saturated packed beds in order to study the effects of packing disorder on the medium effective 
conductivity. Conduction is modeled by a parabolic partial differential equation with random local 
conductivity. Randomness originates from the spatial fluctuation of porosity near solid walls and in the 
bulk region. Assuming a certain porosity statistical distribution, the steady and unsteady heat conduction 
problems are solved. The steady-state solution is used to obtain both the mean value and the standard 
deviation of the effective conductivity for a range of fluid to solid conductivity ratios. The mean and 
standard deviation are used to interpret the scatter of experimental results found in the literature. The 
unsteady heat conduction equation is discretized on a finite spatial grid and an explicit integration in time 

is carried out symbolically for each time step. 

INTRODUCTION 

FROM THE point of view of continuum mechanics, 

statistical or non-deterministic methods offer the most 
economic framework for the analysis of systems with 
intrinsic randomness. Candidates for such systems are 
structures with complicated (or disordered) geometry, 
such as composite materials or porous media. Typical 
examples are fluid-saturated packed beds consisting 
of random packings of solid particles. We assume that 
transport processes in such media can be described by 
continuum models with spatially random parameters. 

Since the details of the microstructure are known only 

in an average (or statistical) sense, it is in the same 

sense that the solution of the governing equation is 
sought. For definiteness, consider diffusion of a pas- 

sive scalar through a randomly packed bed. Given the 

exact location of the solid particles and the transport 
coefficients in the two phases (solid-fluid), one can 

(in principle) obtain the solution of the governing 
diffusion equation everywhere in the domain. Owing 

to the complexity of the microstructure and the uncer- 
tainty of packing (i.e. the method of assembling the 
packed bed), the exact solution is impossible to obtain 
in a deterministic sense. Furthermore, local infor- 

mation is redundant. All that is frequently required is 

an estimate of the average flux of the scalar and a 

description of its statistics. For example, the second 
moment (as expressed by the standard deviation) is 
required in addition to the mean value. The standard 
deviation gives a measure of the reliability of the mean 
value. 

Uncertainties in materials properties and structural 
geometry can be mathematically modeled as stoch- 
astic processes in space, or random fields, cf. 

Vanmarcke [l]. Statistical descriptors for such fields 
in packed beds can be obtained, for example, from 

in-situ measurements, cf. Georgiadis [2], or analytical 
models of the packing, cf. Haughey and Beveridge [3]. 
Transport of a scalar in random fields can be described 
via partial differential equations with random par- 
ameters. Problems related to the formulation and 
analysis of stochastic transport equations were 
analyzed by researchers in the field of underground 
water transport, see review by Sposito et al. [4]. 

In general, solutions of stochastic differential equa- 

tions are difficult to obtain because the solution is 
statistically correlated to the random parameters. In 

practice, solution methodologies for non-deter- 
ministic problems depend on the type of problem 

for which they were developed. We can conveniently 

divide available methodologies for problems with 
intrinsic randomness into two categories: (i) per- 

turbation methods ; and (ii) direct methods. The first 

category pertains to problems where the random part 
is weak, i.e. the random component is much smaller 

than the deterministic. Perturbation methods have 
been applied to structural analysis, cf. Benaroya and 
Rehak [5], and heat transfer, cf. Tzou [6, 71 and 
Georgiadis [8]. In general, ‘weak randomness’ models 

have a limited range of applicability. Let us consider, 
for example, the problem of heat conduction in a 

randomly packed bed consisting of a mixture of solid 
beads and a fluid. If the ratio of fluid to solid thermal 
conductivity 3. is close to unity, a small perturbation 
scheme can be set up by using (1 -A) as an infi- 
nitesimally small parameter. The convergence rate of 
the perturbation expansion can be improved only by 
including progressively more microstructural infor- 
mation on the packed bed, cf. Torquato [9]. It is 
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n 1.4, parameter of mean porosity r,, Th temperature at the left, right solid walls [K] 
profile, equation (7) X horizontal coordinate [m] 

A,D coefficients in equation (23), defined by x s/H, non-dimensional horizontal 
equations (24) and (25) coordinate. 

b 2.0, parameter of mean porosity profile, 
equation (7) Greek symbols 

B porosity function, equation (5) o! 32.30, probability density parameter, 

D, bead diameter [m] equation (8) 
,f(b;) probability density function of porosity p 56.49, probability density parameter, 
H half width of the packed bed [m] equation (8) 
i, n integers ;’ D,/H, bead diameter-to-half width 

& reference effective conductivity, given ratio 
by equation (4) with 4 = 4” w rn- ’ K- ‘1 At numerical time step 

K, overall effective conductivity of packed Ax numerical mesh size 
bed [W m-’ Km’] 0 (T- T,)/(T,, - r,), non-dimensional 

K, max maximum estimate of overall temperature 
conductivity, equation (30) [W rn-- ’ K- ‘1 2” Kc/KS, fluid-to-solid conductivity ratio 

Ke exp experimental estimate of overall (P&I heat capacity of the ~uid-saturated 
conductivity [W rn- ’ Km- ‘1 packed bed [J rn- 3 K- ‘] 

& conductivity of the fluid phase d, local porosity, equation (6) 
[W m-’ K--‘I 

KS conductivity of the solid phase 
$0 0.3, mean porosity in the core region 

deterministic component of local 
[Wm-‘K-‘1 porosity 

KX local effective conductivity of packed $ random component of local porosity, 
bed[Wm-‘Km’] equation (6). 

K: K.J&. non-dimensional local effective 
conductivity Special symbols 

N,, N, total number of grid points in (t*, X) space F(*) Gamma function 

Y heat flux [W m-‘1 Ep], (-) mathematical expectation, mean 
t time variable [s] value 
t* rKo/H2{ pe),, non-dimensional time =‘I=1 standard deviation 

variable REV Representative Elementary Volume, 
T temperature [K] Fig. 1 (a). 

obvious that such expansions do not converge for 
widely different conductivities. Moreover, it is very 
difficult to demonstrate convergence without using, 
for example, Monte Carlo simulations for comparison. 
Monte Carlo schemes form a whole class of direct 
methods for the solution of non-deterministic prob- 
lems but such methods are notoriously inefficient for 
random fields ; they will not concern us here. 

The purpose of this article is to investigate a class of 
direct methods for the solution of diffusion problems 
characterized by stochastic differential equations and 
by finite random variation of transport coefficients. 
In general, numerical methods are required. Padovan 
and Guo [lo] and Padovan et al. [I I] introduced 
non-dete~inistic finite-difference and finite-element 
techniques in the solution of certain steady-state heat 
conduction and structural mechanics problems. They 
discretized the governing equations on a finite mesh, 
derived a linear algebraic system (via standard finite- 
element or -difference approximations), and then form- 
ally inverted the statistical matrix to obtain an ex- 
plicit form of the solution. We feel that the method of 

Padovan and co-workers [ 10, 1 I] is a step in the right 
direction. However, it only treats ‘sparsely prob- 
abilistic systems’; the formulation of the statistical 
terms is such that, after the discretization, the stat- 
istical matrix is not only sparse but it can also be 
decoupled into a sum of deterministic matrices, each 
multiplied by the random variable. 

In this article, we propose a more general direct 
numerical method for the solution of non-deter- 
ministic diffusion problems. Although this method 
can be applied to a broad class of problems described 
by partial differential equations with random co- 
efficients, we choose to apply it to the heat conduction 
problem in fluid-saturated packed beds. We will con- 
sider one dimensional conduction through a ran- 
domly packed bed sandwiched between two parallel 
differentially-heated plates. This configuration is fre- 
quently used to measure the so-called stagnant ther- 
mal conductivity of fully-saturated packed beds. The 
conductivity is formally obtained by dividing the 
measured net heat flux by the imposed temperature 
gradient between the plates. A literature survey of 



heat transfer experiments in packed beds [12-l S] reveals (T,+T&/2 Th 

that there are significant difficulties in predicting accu- 
rately the stagnant thermal conductivity of the solid- 
fluid medium. Two factors contribute to this diffi- 
culty : (i) packing disorder ; and (ii) boundary effect. 
In the following, we investigate the influence of both 
factors on the temperature profile and overall heat 
flux. Steady and unsteady heat conduction are exam- 
ined separately. Finally, estimates of the overall ther- 
mal conductivity are obtained and compared with 
available experimental data. 

(4 ok2H’ 
MATHEMATICAL FORMULATION 

The mathematical formulation of the heat con- 
duction problem in fully-saturated packed beds is 
based on a homogenized description of the solid-fluid 
medium. Making the assumption of local thermal 
equilibrium, a single energy equation is derived by 
averaging the energy equations for two phases over a 
Representative Elementary Volume (REV). The size 
of the REV defines the characteristic spatial scale for 
volumetric averaging. We may note in passing that 
volume averages are equivalent to the more formal (W 0.2J 

0.0 0.2 0.4 0.6 0.8 1.0 

ensemble averages [8] only when the size of the REV 
x/H 

is much larger than the pertinent spatial correlation 
scale. 

FIG. 1. (a) Schematic of the packed bed and a Representative 
Elementary Volume (REV). (b) Mean porosity distribution 

We will consider a packed bed consisting of iden- for two D,/H values. 

tical spherical beads stacked together ‘at random’. 
This ‘at random’ is relative. Since it belongs to a stable KS and Kc the conductivities of the solid and tluid 
heap, each bead has an average of 12 closest neighbors phase, respectively. All beads have uniform diameter 
[3]; we have short-range order. Away from solid 4. Two important parameters are involved in this 
boundaries, the volumetric average of the void frac- study. One is 1, the ratio of Kr and KS, the other is y, 
tion or porosity (percentage of interstitial space) over the ratio of D, and H. We assume that the porosity 
a long slender columnar REV dots not depend on its distribution of this problem is symmetric with respect 
location (homogeneity) and the orientation of its axis to the center line at x = H. Therefore, only half of the 
(isotropy). In this bulk region, we can claim macro- problem (0 < x < H) needs to be considered. 
scopic disorder. In regions where the packed bed is in By aligning the bed so that the gravity vector is 
contact with smooth walls, the macroscopic disorder pointing towards the negative x-direction, we can 
is removed and the distribution of beads is affected by ascertain that the fluid remains practically stagnant in 
the presence of the solid boundaries. Here, we focus the interstitial space and therefore conduction is the 
on packed beds contained in the space between two only mode of heat transfer. We can describe the tem- 
parallel wails, as depicted in Fig. 1 (a). Cheng f 161 has perature field by the following ‘effective’ equation for 
studied the boundary effect due to the presence of the the homogenized medium (solid matrix-fluid) 
walls from a deterministic viewpoint. We can safely 
assume that the statistical distribution of the packing 
density (or porosity) remains invariant along single 
planes parallel to the two walls. This is equivalent to 
defining planar REVS parallel to the walls, as shown 

with the boundary conditions 

in Fig. I(a). We can then account for the boundary T=r, atx=O (2) 
effect by allowing the statistical distribution of 
medium properties (porosity and conductivity) to 

T= (T,+T,)/2 atx= H. (3) 

vary in the direction normal to the wall. K, is the local effective conductivity which in general, 
is a function of position x. 

Steady state problem There are many (o~asionally diverging) opinions 
Consider the problem of one”dimensiona1 steady on the issue of defining Kx and how to represent it in 

heat conduction in a randomly packed bed between terms of the conductivity of the individual phases (K,, 
two parallel solid walls, as depicted in Fig. l(a). The KJ or the structure of the packed bed. Since we intend 
temperatures of the walls are T, (at x = 0) and Th (at to focus on property randomness and the non-uni- 
x = 2H). The width of the bed is 2H. We denote by form porosity effects on the temperature distribution, 

Direct numerical solution of diffusion problems with intrinsic randomness 3143 
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we simply adopt the empirical formula of Zehner and 
Schlunder [I 31 for a packed-sphere bed : 

B+l B- 1 
- - ..- 

2 I-iB (4) 

where (p is the local porosity and the following 
expression is recommended for spherical beads : 

(5) 

The above formula has been shown to give reasonable 

results when the wall effect is taken into account, cf. 

Cheng 1161. 
The spatial non-uniformity of porosity (i, is a key 

feature of our model. In most of the porous media- 
related experiments, porosity is measured by using 
various sampling techniques. Since the beads are ran- 
domly packed, each location in the container will not 
be occupied by identical configurations of beads dur- 
ing every packing. We assume that the porosity profile 
is a random function of position. In the theory of 
random processes, one packing constitutes a single 
realization. All the realizations compose a random 

space. The outcome of each packing, i.e. the porosity. 
is then a random variable defined on the random 
space. In the context of volumetric averaging, this 
is equivalent to considering the porosity distribution 
along a planar REV depicted in Fig. I (a). The stat- 
istical parameters of the distribution are functions of’ 
x. For a given s-location, the statistical parameters 
can be obtained by sampling in the corresponding 
REV, i.e. by considering the distribution along the 
plane at a distance x from the wall. 

The mean porosity profiles WC USC in this work are 
plotted in Fig. 1 (b) for two diffcrcnt bead diameter to 
bed thickness ratios. It is clear that when 7 = 0.37, the 
wall effect on the porosity is much more severe than 
that of ;’ = 0.074. The standard deviation of the 

porosity is assumed to be the same for all positions 
and has the value of 0.05077 as we have mentioned 

previously. 
An analytical solution of the system defined by 

equations (l)-(3) can be easily found : 

(9) 

The heat flux at the wall and the overall conductivity 
are given below : 

T, - T,, 
(10) 

2H 

and 

(11) 

It is well known that the porosity is a strong func- 
tion of .r near the solid wall and that it remains almost 

uniform (constant) a few bead diameters away from 
the container wall (core region). Using the results of 

Haughey and Beveridge [3], Georgiadis and Catton 
[19] showed that in the core region, the rnndom vari- 
ations of porosity can be approximated by the Beta 
distribution. The following porosity profile satisfies 
all the above requiremen& : 

We can now obtain the expressions of the math- 
ematical expectation and standard deviation of the 
above quantities : 

where 

is the deterministic component of the porosity, u = 
1.4. b = 2.0, and #” = 0.3. The random variable 6 
accounts for the random variation of the porosity, 
and (6, is the mean value of d;. Equation (6) implies 

that the mean porosity ($) is equivalent to the deter- 
ministic porosity 6(.x). The probability density func- 
tion of the porosity variation is the Beta distribution 
with zero mean : 

where cr = 32.30 and lj = 56.49. The standard devi- 
ation of the total porosity is 0.05077. cf. Georgiadis 

and Catton [19]. In the abscncc of pertinent expcr- 
imental data. we have made the tacit assumption that 
the statistics of the local porosity ~uctu~~tjon arc 
described by the same Beta distribution (equation (X)) 

evcrywhcrc. 
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-E[K,(&])‘j’(d;)d$ I”. (17) 
I’ 

In the unsteady heat conduction problem, all the 
parameters of the porosity distribution remain the 
same but we are faced with a more complex governing 
equation 

(18) 

with boundary conditions 

T = T, at x = 0 

T=(T<+T,)/2 at.w=H 

and initial condition 

(191 

(20~ 

T= (T,+T,)/2 at t = 0. (21) 

Kx is given by equation (4), and (PC),,, is assumed to 
be a constant parameter of the porous system. In a 
typical experiment, the initial temperature and the 
temperature at the walls are usually controlled. This 
is consistent with our assumption that the initial and 
boundary conditions are deterministic, as expressed 
by equations (19)-(21). 

The non-dimensional form of the governing equa- 
tions becomes 

(224 

with 

8=0 atX==O, 0=1!2 atX=l, 

and 0 = l/2 at t* = 0. (22b) 

The system of equations (22a). (23b) constitutes a well- 
defined initial value problem. This problem is for- 
mulated in terms of a stochastic differential equation 
with intrinsic randomness (since K:is a random func- 
tion). Hence, the solution is also expected to be a 
random function, We are interested in finding its 
mathematical expectation and standard deviation. 
The coupling of the random function I(: (which is a 
function of the random variable 4) and the stochastic 
response 0 makes the problem dificuit to handle 
unless an explicit solution can be found, as in the case 
of the one-dimensional steady heat equation which 
we solved previously. However, an explicit solution 
like (9) cannot be found in closed form for the 
unsteady problem. 

Statistical pertur~tion methods have been used 
extensively in the solution of intrinsically random sys- 

tems [5-S]. Such approaches hinge on the assumption 
that the randomness of a parameter is small relative 
to its mean {or dete~in~stic) value. This assumption 
decouples the random parameter from the stochastic 
response of the system and helps overcome the math- 
ematical difficulty of the original problem. In general, 
random deviations of parameters are comparable to 
their mean values. Since there is no a priori criterion 
for the applicabiIity of perturbatjon methods based 
on formal expansion techniques, a new approach has 
to be sought. 

First, we need to discuss the details of classical 
numerical approaches for solving deterministic 
differential equations. Equation (22a) is a linear para- 
bolic equation with variable coefficients. Employing 
second-order finite-difference approximation of the 
spatial derivatives, the simplest method for temporal 
integration of (22a) is the explicit (forward Euler) 
scheme, which is of first-order accuracy in time 

Q!‘-@!-’ B::+,’ - 0;: ,’ 
-!.A = “--._ 

At 2Au 

where AX and At are the mesh size and the time step, 
respectively, so that X = iAx and t* = nbt. The 
coefficients A and D are functions of the random 
variable $ and are defined as follows : 

The Lax equivalence theorem states that, for a well- 
posed initial-value problem, stability is a necessary 
and sufficient condition for convergence. The stability 
conditions for the scheme given by equation (23) are 
given by Peyret and Taylor [20] 

AZAt 2DAt _. .___ 
20 

G 1 and (A;_,-, G 1. (26) 

By rearranging equation (23) we have 

(i = 2,3 ,.... N,.-1; n=2,3,...,N,) (27) 

where (iv,, N,) is the total number of grid points in 
the (X, t*) space. The grid-function #:I in equation 
(27) represents O(iAx. nAt) in equation (22). The 
initial and boundary conditions corresponding to 
(22b) are 

e; = l/2 (i= 1,2 . . . . . NJ (281 

0: = 0, s;., = l/2 (n = 1,2,. , .N,). (29) 
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If this was a deterministic problem, i.e. if Kf was 
not a random function, the numerical scheme expres- 
sed by equations (27)-(29) would be easily coded 
using a conventional language (FORTRAN or C) and 
executed on a digital computer. Now that we have 
the extra random variable 6, we need to invent a 
procedure so that the solution is obtained explicitly, 
keeping at the same time the functional dependence 

on the random variable. Since the solution is given 
only numerically, we arc motivated to consider (for 
the first time) the marriage of numerical and symbolic 
manipulation methods. The idea is to use symbolic 

computation to obtain an explict form of the solution 
with (r as a parameter. The details of our approach 
are given in the next section. 

NUMERICAL-SYMBOLIC COMPUTATION 

Symbolic computation is being increasingly used in 
various areas of fluid mechanics and heat transfer, 
cf. Bau ef trl. 1211. Unlike the classical numerical 
computation approach which manipulates numbers, 
symbolic computation provides the user with tools to 
manipulate mathematical expressions symbolically. 
Some examples include manipulating algebraic and 
trigonometric expressions, integrating and differ- 

entiating analytical functions and solving differential 
equations analytically under some special cases. There 
are currently several symbolic manipulators avail- 
able commerically, e.g. REDUCE. MACSYMA. 
MATHEMATICA and MAPLE. They all have built- 
in capabilities of performing routine mathematical 
operations as well as executing algorithms supplied 
by the user. Since symbolic manipulators perform 
exact mathematical operations, they have been mostly 
used for solving analytical equations and deriving per- 
turbation expansions, tasks that would otherwise 
require tremendous amounts of ‘paper and pencil’ 
work. 

In this study. we explore a new way of applying 
symbolic computation to certain stochastic problems 
which broadens its applicability to engineering prob- 
lems. We USC symbolic computation to solve the one- 
dimensional unsteady heat conduction equation with 

variable and random conductivity. It will become 
obvious that this approach does not have to be restric- 
ted to the solution of the heat conduction equation 
only. In principle, it can be applied to any differential 
equation with random parameters (c~)e~cients) that 
is amendabic to numerical integration. 

In the stochastic modeling of engineering problems, 
we are usually interested in the mathematical expec- 
tation and the variance of the solution. In the previous 
section, we found analytical solutions for the one- 
dimensional steady heat conduction problem (equa- 
tions (9)-( 11)). We note that the simplest way of find- 
ing the mathematical expectation or the standard 
deviation of these quantities is by forming certain 
integrals with respect to the random variable 6, as in 
equations (I 2)-( 17). Lacking similar explicit solu- 

tions for the unsteady case, we can instead manipulate 
equations (27)-(29) which are explicit finite-differ- 
ence approximations of the solution, by using sym- 
bolic algebra. Recall that Q(X, t*) is approximated by 
0: which is computed by marching forward in time. 
On the right hand side of equation (27), AX, A.t are 
fixed and O,!‘-,‘. &’ ‘. @+ ,I are known functions of 6 
from the previous time step. The coefficients A, /I 
(defined by equations (24) and (25)) are also functions 
of the random variable 6. Therefore, formal appli- 

cation of equation (27) yields (1:’ as a function of 6 at 

every time step. The random variable 6, which is 
involved in the definition of the coefficients A and D 

(and consequently in 0: via equation (27)). enters the 
problem through a functional relationship. The role 
of symbolic computation is to obtain this functional 

relationship in e.xplicit,#hnz throughout the numerical 

integration via (27). 
We used the symbolic manipulation software pack- 

age MAPLE (Version 4.2.) [22] on a Sun 3 work- 

station. In the following, we briefly outline the coupled 
numerical-symbolic scheme for the solution of 

(22a), (22b). 

1. Read input parameters 7, i_, Kf, u, h, c/J~,, Ax, At. 
2. Read functional expressions &(.x, $), K,(4). 
3. Evaluate coefficients involved in the governing 

equation (22a), in this case K:. 

4. Develop finite-difference approximations for 

5. Read initial and boundary conditions. Derive 

explicit form for each time step, as in equations (27)) 

(29). 
6. March forward in time using symbolic manipu- 

lations software. Store results for every time step in 
Array-D. 

7. Read in the probability density function of the 
random variable, equation (8). 

8. Compute the mathematical expectation and 
standard deviation for each clement of Array-D and 
store in Array-E and Array-SD, respectively. 

Each element of Array-D, which is conlputed in step 
6, is a function of the random variable 6. Generally, 
numerical integrations have to be performed in step 
8 since the solution is not available in closed- 
form. MAPLE has the additional feature of numerical 
integration. In reality, since the expression of each 
integral can contain thousands of terms, the RAM 
space of the Sun 3 computer we used is not enough to 
complete the whole computation. It is almost imposs- 
ible to accomplish a job with arrays having more than 
10 x 10 elements. Here, we used additionally a Cray 
Y-MP computer to do the numerical integrations with 
a FORTRAN code. Since the typical number of 
elements in the Array-D is of order 104, we had to 
partition the arrays. Every ten time steps, we had to 
store the results from step 6 to Array-D, transfer to 
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the Cray for the integrations of step 8, transfer the 
results back to the Sun workstation, and use them as 

initial conditions for the next 10 steps. The results 

eventually converge to the steady state solution as we 
show in the following section. 

RESULTS AND DISCUSSION 

The results for the steady case have been sum- 
marized in Figs. 225 and Tables 1 and 2. In all the 

figures, only half of the packed beds domain is shown 
due to the symmetry with respect to the center line. 

We examined five different combinations : oil/glass, 
water/steel, glycol/steel, glycol/acrylic and water/ 
acrylic. The thermal conductivities of the solid and 
fluid phases are listed in Table 1. For each medium, 
two geometries have been studied, y = 0.37, where the 
bed width is about 6 times the bead diameter; and 
y = 0.074, where the bed width is about 28 times the 

bead diameter. It is known that wall effect on the 
porosity distribution is felt inside a layer which is 

about four bead diameters thick ; the reader is referred 
to Fig. 1 (b). Our results show that the heat conduction 
characteristics in the packed beds depend on both 1 

and y. 
The local effective conductivity computed from 

equations (4) and (5) has a mean value that is plotted 
in Figs. 2(a) and 3(a). Its standard deviation is plotted 
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0.2 
- glycol/arcylic 
- water/acrylic 
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FIG. 2. Local effective conductivity for y = 0.37. (a) Mean 
value ; (b) standard deviation. 
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0.0 
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FIG. 3. Local effective conductivity for y = 0.074. (a) Mean 
value ; (b) standard deviation. 

in Figs. 2(b) and 3(b). For the same medium, the wall 
effect on the mean of the local conductivity increases 
as the value of y increases. For the same geometry, 
the wall effect is more important for combinations 

with 1 much less than O(l), such as water/steel and 
glycol/steel. The standard deviation of the local effec- 
tive conductivity shows the same trends. It is worth 
noting that the deviation can reach as much as 20% 
of the mean value. 

Figures 4(a), 5(a) give the mean value of the tem- 
perature profile. For media with 1 << 1 and y = 0.37 

(Fig. 4(a)), wall effects are strongly manifested by 
large temperature gradients near the solid wall. The 
closer 1 is to unity, the weaker the wall effect is. This 
result agrees with the analysis of Cheng [ 161. However, 
if 1 exceeds 1, the wall is felt again, but this time, the 

temperature profile has the opposite curvature from 
the i K 1 case, and there is a smaller temperature drop 
near the wall. This phenomenon is not observed in 
Cheng’s [ 161 deterministic model. For y = 0.074 (Fig. 

5(a)), the wall effect is same, only weaker. The stan- 
dard deviation of the temperature is plotted in Figs. 
4(b), 5(b). Observe that the standard deviation is zero 
both on the wall (x = 0) and the center line (x = N). 
This is a result of deterministic boundary conditions 
and the imposed symmetry of the problem. The stan- 
dard deviation reaches its maximum value nearer to 
the wall for the smaller y case. However, one should 
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---a--- mater/~wl 
--9-- glycdkteel 
--+- glycol/acrylic 

3 0.2 0.4 0.6 0.8 1.0 

xiH 

y = 0.31 - oiVg_ 
--D-- water/steal 
-t- giycollstee1 

1.5e-3 - T glycol/wylic 
--A-- water/acrylic 

Ftc;. 4. ~j~e~sionj~ss temperature d~s~r~but~o~l for p = 0.37. 
(a) Mean value ; (b) standard devikttion. 

note that the temperature deviation is only about IO ’ 
relative to its mean value. 

The mean values and standard deviations of the net 
heat Rux and the or:wull effective conductivity, arc 
compiled in Table 1 for the same five combinations of 

0.2 

- 0iUgiaa 
--o- W~tenisteet 

0.i -t- giymwsteel 

0.0 
0.0 0.2 0.4 0.6 0.6 10 

X/H 

FIG. 5. Dimensionkss temperature distribut;on for ;’ = 
0.074. (a) Me;un value : (b) smndard deviation. 

media and two 7 values. In Table 2, we repeat the 
computed conductivity results for each reference (the 
two values separated by a slash corsespond to ;I = 0.37 
and ;I = 0.074). We also list fhe range of experimental 
estimates of cond~ictiv~ty found in the literature [II. 

Table t. Computed results ofavcrage totat heat Aux, average overall &o~ductivity and their standard ~~~v~at~ons 
_ .._ -_~_.._~___..--- _ ..__..-. _ ~~___. . -~_- .._. -.--_ -.- --_ _______~_ ~___. . . . . _- -... 

;‘ = r>,;n = 0.37 :’ = n,;u = 0.074 

Liquid Solid Kr K< i <c/> SD[YI <KC> SD[K,l <(I) SDkl <K;> SD[K,] 
_. __. _-.. .._...~ _--- . -___.. ” .._..-.._ ----. “..____._ . ..^-^.” ---.... -.-~ ..---. . ------- --I 

Oil Glass 0.15 I.L 0.136 0.24t 0.023 0.48 1 t1.046 u.274 0.024 0.54x 0.052 
Water Steel 0.615 63.18 O.Ol 2.8 0.519 5.599 I .039 3.689 O.-ml 7.378 1.4i7 
Glycol see1 0.262 37.39 0.007 1.320 0.256 2.641 0.512 I .766 0.356 3.532 0.712 
Giycol Acrylic 0.261 0.16 1.63 0.097 0.002 0.194 0.005 0.094 0.002 0.188 0.005 
Water Acrylic 0.63 0.16 3.937 O.L43 0.01 0.287 0.02 0.133 0.009 0.266 0.019 

-._ ._-- _--.. __-.. .---“.. ._..~~~~ --. --._ - .._. _ 

Table 2. Comparison of computed overall conductivity (K,}, maximum theoretical estimate &max. and 
experimental results &exp from refs. [ t2. 14. 15. 171. The values separated by slash correspond to 

” = 0.37:y = 0.074 
~_ _____._... --_. _.--. ~~~ ...I . . -_ 

Liquid Solid P. (Kc> SDIKI KC max KC exp 
__._.._, __..-.-.____ ..__ll-. __~ ..---. ..--.-- ._--__ ~~ -._. __-._. 

Oil GhSS 0. I36 0.481iO.548 0.046,/0.052 0.742iO.8 0.47-0.60 
water Steel 0.01 5.599/7.378 1.039/1.417 39.57j43.44 3.30-4.88 
Glyeol Steel 0.007 2.641;3.532 OSI2;0.712 23.38j25.68 8.87 2.58 
etycoi “%Cryk 1.63 o.t94:0. I88 O.OO~~~.O~~ 0.198/O. 192 0.21 0.23 
Water Acrylic 3.937 0.28710266 0.02/0.019 0.337/0.308 0.36-0.48 

_ .^--i _- -.... 
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14, 15, 171, as well as an ‘upper bound’ for the con- 
ductivity of an equivalent homogeneous packed bed 

given by the following expression 

K,max = m&+(1-4)K, (30) 

@ is an average porosity obtained by averaging equa- 
tion (7) over the channel width. The two values sep- 
arated by a slash and listed under the column K, max 
in Table 2 correspond to @ = 0.377 (y = 0.37) and 
0 = 0.316 (‘4 = 0.074). 

Our computations imply that the standard devi- 
ation in effective conductivity can be as high as 20% 
of the mean value for combinations with /I << 1. This 
exceeds the typical 5~10% experimental error in 

reported conductivity measurements [14, IS] and is 
consistent with the wide scatter of experimental values 

for water/steel packed beds. Another observation con- 
cerns the 1 > 1 case. Nield [ 181 has called attention to 

the fact that the measured values by Prasad et al. [ 171 
exceed the ‘uljper bound’ K, max. Our results in Table 
2 for glycol/acrylic and water/acrylic explain at least 
part of this anomaly. They indicate that the difference 
between the expected value (Kc) and Kc max is about 

one standard deviation. 
A plot of the unsteady temperature profiles is given 

in Figs. 6(a)-(c). The mesh size Ax chosen is 0.1 and 
the time step At is 0.0009, in order to satisfy the 
stability conditions (given by equation (6)). Only the 

simulation for the combination water/steel with 
7 = 0.37 is performed. We have only shown the first 

190 time steps for both the mean temperature field 
(Fig. 6(a)) and its standard deviation (Figs. 6(b),(c)). 
The mean temperature field reveals the monotonic 
approach of the transient profile from the initially 

uniform distribution to the steady state solution. Fig- 
ure 6(b) shows the large spike in the standard devi- 
ation distribution at the onset. Figure 6(c) gives a 
detailed plot of the standard deviation profiles for 

large times. The deviation seems to approach the 
steady state profile in a non-monotonic fashion. For 
each time step, the computation typically takes an 
hour of CPU time on the Sun 3 workstation. There- 
fore, extensive calculations using the current con- 

figuration arc difficult at the moment. 

CONCLUDING REMARKS 

For the first time (according to the present authors’ 
knowledge), a combination of a numerical scheme 
and symbolic manipulation software has been used to 

solve a parabolic transport equation with random 
conductivity. The equation is discretized on a finite 
spatial grid and an explicit integration in time is carried 
out symbolically for each time step. Although our 
example involves the heat equation in a single spatial 
dimension, this approach can be, in principle, 
extended to solve a broader class of stochastic partial 
differential equations with random coefficients. More 
than one spatial dimensions can be handled provided 
explicit temporal schemes are constructed. This seems 

(cl 

0.6 
y = 0.37 water/steel 

1=0 

0.0 0.2 0.4 0.6 0.6 1.0 

XIH 

0.015 

0.010 

0.005 

0.000 
( 

y = 0.37 

i 

water/steel 

I 0.2 0.4 0.6 0.6 1 3 

x/H 

I .___ 

= 0.37 water/stee 

0.001 

. 
“““0 _.___ 

0.0 0.2 0.4 0.6 0.8 1.0 

x/H 

FIG. 6. Transient temperature distribution for y = 0.37. (a) 
Mean value ; (b) standard deviation ; (c) standard deviation 
close-up. Each profile in (b) and (c) is marked by a number 
which denotes the time instant in IOAf units. i.e. curve 19 

corresponds to I = 190 AI. 

feasible if the symbolic manipulation is carried out on 

a supercomputer. 
The feasibility of a direct computation of the stat- 

istical mean and standard deviation for both steady 
and unsteady conduction is demonstrated. Such simu- 
lations provide valuable insight into the complex 
dynamics of stochastic processes. In addition, the 
standard deviation can reveal the reliability of the 
mean value when used in engineering estimates. In the 
particular case of effective thermal conductivity of 
packed beds, we proved that the computed standard 
deviation provides an n priori estimate of error. 
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In closing, we have proposed a general direct 
method for the solution of stochastic problems 
governed by partial differential equations with intrin- ’ 
sic randomness. The physical problem we chose does 
not necessarily demonstrate the superiority of this 9 
approach compared to perturbation schemes [6-81. 
Perturbation schemes based on formal asymptotic ,. 
expansions still offer an economic alternative pro- 
vided their convergence is demonstrated. 
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SOLUTION NUMERIQUE DJRECTE DES PROBLEMES DE DIFFUSION AVEC UN 
ERREMENT INTRISEQUE 

R&urn&Un schema de manipulation hydride numerique- symbolique est developpi- pour I’analyse des 
problemes de diffusion avec erremcnt intridque. Le schema est applique a l’etude de la conduction 
thermique monodimensionnelle dam des lits fixes pleinement satures de facon a etudier les effets du 
desordre de l’empilement sur la conductivite effective du milieu. La conduction est modelisee par une 
equation parabolique aux dtrivees partielles avec une conductivitt locale altatoire. Le hasard provient de 
la fluctuation spatiale de la porosite pres des parois solides et dans la region du coeur. En supposant une 
certaine distribution statistique de porositt, les problemes de conduction permanente et variable sont 
resolus. La solution permanente est utilisee pour obtenir a la fois la valeur moyenne et I’ecart-type de la 
conductivitt effective pour un domaine du rapport des conductivites du fluide et du solide. La moyenne et 
I’ecart-type sont utilists pour interpreter la dispersion des r&hats exptrimentaux trouvts dans la littera- 
ture. L’equation de la conduction thermique variable est discretisee sur une grille spatiale finie et une 

integration explicite dans le temps et conduite symboliquement pour chaque pas de temps. 
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DIREKTE NUMERISCHE L&SUNG VON DIFFUSIONSPROBLEMEN MIT 
ZUFALLSCHARAKTER 

Zusammenfaasung-Es wird eine hybride numerisch-symbolische Vorgehensweise bei der Analyse von 
Diffusionsproblemen mit Zufallscharakter entwickelt. Das Verfahren wird auf die Untersuchung der 
eindimensionalen Warmeleitung in vollstandig geslttigten Festbetten angewandt, urn den EinfluB der 
Packungs-Unordnung auf die effektive Warmeleitfahigkeit zu bestimmen. Der Leitvorgang wird mittels 
einer parabolischen partiellen Differentialgleichung mit zufalliger iirtlicher Leitfahigkeit modelliert. Der 
Zufallscharakter riihrt von der iirtlichen Schwankung der Porositlt nahe der festen Begrenzungswand und im 
Kerngebiet her. Unter der Voraussetzung einer bestimmten statistischen Verteilung der Porositat werden 
stationare und instationare Warmeleitungsprobleme gel&t. Mit Hilfe der stationaren Losung ergibt sich 
sowohl der Mittelwert als such die Standardabweichung der effektiven Warmeleitfahigkeit in einem weiten 
Bereich des Warmeleitfahigkeitsverhaltnisses von Fluid und Feststoff. Mittelwert und Standardabweichung 
werden fur die Interpretation der Streuung von Versuchsergebnissen aus der Literatur verwendet. Die 
Gleichung fiir die instationlre Warmeleitung wird in ein endliches raumliches Gitter diskretisiert. Die 

explizite Integration tiber die Zeit wird symbolisch fiir jeden Zeitschritt ausgefiihrt. 

HPIIMOE 4MCJIEHHOE PEIIIEHME 3AAA9 AM@@Y3HM C BHYTPEHHER 
XAOTH3AIJMEn 

AeAoTn~a-_AnnaHan~3a3anar~~~~y3~acB~~~~eHHeg xaom3aqneiipa3pa6oTaHare6pe~arcxeMa 
wcnemo-0nepaTopHarx npeO6pa30BaHHk CxeMa ucnonb3yeTcr npw nCcnenoBaHnH 0nHoMepnoii Ten- 

JlOnpOBOnHOCTH B nOJIHOCTblO HaCbmJeIiHbtX ILIIOTHbtX CJlOIlX C UeJtbEO B3y'ieHHK BJIWRHHR HeynOpK)JO- 

SeHHOCTW ynaKOBKH Ha 3&@KTHBHblii K03@WWeHT TenJlOnpOBOJJHOcTH CpeAbI. TenJlOnpOBOAIiOCTb 

htonenripyercn napa6onaqecrorM ypanHeHHeh9 B qacrmx npoH3nomndx co cnyrlatixibm notzurbHbm4 
KO+&iIW3iTOM TeILJIOnpOBOJUiOCTH.XaOTH~HOCTbB03HWKaeT BCJIenCTBHenpOcTpaHCTBHHblX l#UIj’KTya- 

Witi nOpO3HOCTH y TBepnbIx CTeHOK B B o6aehte. B IIpe~nonomeHHH CTaTHCTWWCKOrO pacnpeneneHsn 

nop03~ocrH pemam~cn cramioHapHbIe xi wi.xamioHapHble 3anaw Tennonposormocx CTamioHapHoe 
pememie 5icnonbsyeTcn arm HaxoxcneHwn cpemiero 3HaSeHml H CTaHnapTHoro OTKJIOHCHHII @eKTHB- 

HOI-0 K03$&iWieHTa TeWlOnpOBOJiHOCTH B HCCnenyeMOM JJ"ana30He OTHOmeHHii TeMOnpOBOJIHOCTefi 

nwwocr~~ TsepnoroTena.CperuIeeHcraHnapTHoe oTKnorieHwn~cnonb3ymTcn~nO6a~cHeHHnpa36- 

pOCa HMeIOmHXCK B JIHTepaType 3KCnepHMeHTanbHbIX naHHbIX.&CTalJHOHapHOe ypaBHeHHe TelLlIOnpO- 

BOiTHOCTH lurCKpeTEi3HpyeTCK C nOMOIlWO npOcTpaHCTBeHHOfi CeTKH, H OnepaTopHbIM MeTOnOM 

OC~ecTBJIKeTCKHHTeI-pHpOBaHHeHaKaXCnOMBpeMeHHOMmare. 
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